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Solution methods, both numerical and analytical, are considered for solving the 
Liouville master equation associated with discrete-state Markovian initial value 
problems. The numerical method, basically a moment (Galerkin) method, is 
very general and is validated and shown to converge rapidly by comparison 
with an earlier reported analytical result for the ensemble-averaged transmission 
of photons through a purely scattering statistical rod. An application of the 
numerical method to a simple problem in the extended kinetic theory of gases 
is given. It is also shown that for a certain restricted class of problems, the 
master equation can be solved analytically using standard Laplace transform 
techniques. This solution generalizes the analytical solution for the photon 
transmission problem to a wider class of statistical problems. 

KEY WORDS:  Discrete-state Markov processes; Liouville master equation; 
Markov processes; master equation; random processes; stochastic processes. 

1. I N T R O D U C T I O N  

In a recent article, Vanderhaegen and Deutsch (1~ (hereafter referred to 
as VD) considered the radiative equilibrium problem for a finite rod 
under the assumption that the rod is composed of two statistically 
mixed materials. The statistics of the mixing was taken as homogeneous 
(stationary) and Markovian, and the interaction coefficients (cross 
sections) between the radiation and each component of the mixture were 
assumed to be spatially independent. This boundary value problem was 
converted to an initial value problem via the invariant imbedding model (2~ 
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(essentially a Riccati transformation), and the resulting statistical Markov 
initial value problem was treated using the Liouville master equation 
approach. ~3) The master equation in this case is sufficiently simple that it 
can be solved analytically. From this solution, VD computed the quantity 
of interest, namely the ensemble-averaged transmission through the rod, by 
simple numerical integration. An independent analysis for this problem, ~4) 
using an approach entirely different from the master equation, confirmed 
the results reported by VD. ~1) 

In this paper, we consider a very general class of initial value problems 
for a two-state Markovian mixture. In general, such problems are too com- 
plex to solve analytically, and accordingly we develop a numerical method 
for computing the ensemble average for any quantity of interest associated 
with the problem under consideration. The class of problems we consider 
is a general nonlinear scalar (single equation) binary mixture problem with 
nonstationary Markovian mixing, and the underlying formalism used is the 
Liouville master equation approach. The problem treated by VD falls 
within this class, and we use their analytical results to validate our general 
numerical approach. As will be evident from the details given in this paper, 
all of our considerations can be extended to treat matrix (more than one 
equation) initial value problems with M-state (M > 2), rather than binary 
(M=2),  Markovian statistics. These generalizations involve only addi- 
tional algebraic, not conceptual, complexity. To make our meaning clear, 
"scalar" here means a single stochastic dependent variable in the dynamical 
description of the system, such as Eq. (2) where p as well as F are scalars. 
"Matrix" refers to a system of equations describing the dynamics; p and F 
in Eq. (2) would be K-component column vectors, and such a problem 
would constitute, in our language, a matrix problem of index (size) K. We 
note that K (the number of stochastic independent variables) and M (the 
number of discrete states) are independent, with K t> 1 and M ~> 2. 

The lowest order numerical approximation actually produces, for all 
problems, a very simple analytical result. This result may be useful for 
assessing in a very simple way the qualitative behavior of the solution for 
any problem in this stochastic class, in particular for short times. As an 
example of the use of our numerical method in higher order, we consider 
a simple stochastic problem drawn from the extended kinetic theory of 
gases. ~5'6) This problem is sufficiently complex to preclude an analytical 
solution, but our numerical scheme is shown to give quite accurate results 
in relatively low order. We also show that for a certain subclass of the 
general class of problems under consideration, one can obtain exact 
analytical results for the solution of the master equation. This generalizes 
the analytical considerations of VD ~l) to a larger class of problems than 
they considered, although the analytical techniques we use are quite dif- 
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ferent. They applied a Green's function technique to partial differential 
equations involving mixed derivatives, whereas we use traditional Laplace 
transform techniques on the hyperbolic master equation in its rudimentary 
form. 

We are unaware of any work in the literature, other than the paper by 
Vanderhaegen and Deutsch, which deals with the solution of the master 
equation as considered in this paper. We would welcome communications 
giving references to any related work, including areas of application. 

2. THE LIOUVILLE MASTER EQUATION FORMULATION 

We consider a dynamical system which at any time t can be in one of 
two states. We label these states with indices 0 and 1. The specification of 
which state is present at any given time is taken as a statistical process, and 
is assumed to be Markovian. Specifically, if the system is in state i at time 
t, the probability of the system being in state j ~ i at time t + dt is assumed 
to be given by the no-memory statement 

dt 
Prob(i~J)=2i(t  ), i = 0 , 1 ;  j ~ i  (1) 

where the 2i(t) are prescribed functions of time. For any realization of the 
statistics, the dynamics of the system is taken as described by 

dPd@t)+F(p,t)=O, 0~<t<oc  (2) 

where F is a prescribed nonstochastic function of its arguments provided 
that the state of the system is specified. We let Fi(p, t), i =  0, 1, be this 
function corresponding to state i. We assign a stochastic initial condition 
to Eq. (2) of the form 

{/ ~o if the system is in state 0 at t = 0 
p(0) = P l if the system is in state 1 at t = 0 (3) 

Associated with Eqs. (1) and (2) is the Liouville master equation (3'7) 
for the joint probability P~(p, t), defined such that Pz dp is the probability 
that the system is in state i at time t, and that the stochastic solution lies 
between p and p + dp. We have the two coupled equations 

c~Po 8 P1 Po 
- -  ( F o P o )  = ( 4 )  

8t 8p 21 20 

8P1 8 Po P1 
(r l  P1) . . . .  (5) 

8t 8p 20 21 
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The initial conditions on Eqs. (4) and (5) are 

Pf(p, O) = pi(O) 6(p - ~), i= O, 1 (6) 

which expresses the nonstochastic nature of the solution if the system is in 
state i at t=0 .  Here the t3i are the prescribed initial data according to 
Eq. (3), and pi(t) is the probability of the system being in state i at time 
t. This probability is given by 

f 
o o  

pi(t) =- dp P~(p, t) (7) 
- -  o o  

Integration of Eqs. (4) and (5) over all p gives the (forward) Chapman- 
Kolmogorov equations 

@o Pl Po (8) 
dt 21 20 

@1 Po Pl (9) 
dt 20 21 

which relate the probabilities pi(t) to the Markov transition functions 2i(t). 
Equations (8) and (9) are easily solved to give 

Pi(t)= pi(O) exp l -  f~ dt" 2@t,,)l 

t 1 t 
+ f o d t ' ~ e x p l - f t d t " ~ ] ,  j r  (10) 

where 

1 1 1 
- - 4  (11) 

;40 ,~o(0 ;~,(r 

The ensemble average of any function of the solution, say G(p), is given by 

f 
o c )  

(G(p))  = dp G(p)FPo(p, t) + P~(p, t)] 
- - O 9  

(la) 

Thus, the key to obtaining complete results for this statistical problem 
is to obtain the solution for the Pi(P, t) defined by Eqs. (4)-(6). The 
problem treated by VD (1) corresponds to 

F~(p, t)=aip~; a(P)=0 (13) 
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where af is a constant. In an earlier paper, (8) Vanderhaegen considered the 
linear case 

F~(p, t)=ai+b~p; G(p)=p (14) 

We note that this linear case is particularly simple, since one can find the 
ensemble average of any nonnegative integral power of p without having to 
solve the p0rtial differential equations for the P~(p, t) given by Eqs. (4)-(6). 
To see this, we define 

Pi(PT) = dp pnPi(p, t) (15) 
- - o o  

and it then follows that 

( P ' )  = Po(P~) + P,(P'~) (16) 

Multiplication of Eqs. (4) and (5) by pn and integration over all p gives 

d m Po(P~) + npo(ao(p~-l~ + bo(p~)) - P'(P~) 
21 

d 

20 

po(p~) 
2o 

p~(pT) 
2~ 

n~>0 (17) 

n~>0 (18) 

We see that Eqs. (17)-(19) can be solved sequentially. That is, the n = 0 
equations are just a restatement of Eqs. (8) and (9), and the n = 1 equa- 
tions are self-contained for (Pi) ,  whose solution has been reported 
earlier (s'9~ for ai and bi independent of time. At any higher level n, the 
equations for (p~)  depend only upon the (PT-~) ,  which are conceptually 
known from the prior consideration of the level (n - 1) equations. If one is 
only interested in the ensemble-averaged solution ( p ) ,  it is not necessary 
to consider these higher-level n equations. 

Such simplicity is not extant for a more general form of F,(p, t). In 
particular, it is much more difficult to treat the case considered by 
Vanderhaegen and Deutsch (VD) (~) as described by Eq. (13). In this case 
one must actually solve for the joint probability functions Pi(p, t) and sub- 
sequently perform the numerical integration over p to obtain ( p )  or any 
other ensemble average. However, for this problem VD were able to obtain 
the P~(p, t) analytically in terms of Bessel functions by using a classic 
Green's function technique. Such an analytical solution is not possible for 

{p~'(0) } = r i=0 ,  1 (19) 

The initial conditions on Eqs. (17) and (18) follow from Eq. (6) as 
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general functions F,(p, t). This state of affairs leads us to the consideration 
of a general numerical method, valid for arbitrary F~(p, t), to obtain the 
Pi(p, t). This is described in the next section of this paper, and the 
subsequent section gives a few numerical results based upon this method. 
Following these numerical considerations, we consider in an appendix a 
restricted class of functions F,(p, t) for which an analytical solution of Eqs. 
(4)-(6) can be found using standard Laplace transform methods. The VD 
case given by Eq. (13) falls into this class of problems which can be treated 
analytically. 

3. THE N U M E R I C A L  M E T H O D  

We initially consider Eqs. (4)-(6) in slightly less than full generality. 
Specifically, we develop a numerical solution method for these equations 
under two simplifying assumptions. A completely general treatment will be 
given at the end of this section. The first simplification is that of stationary 
statistics, by which we mean that the Markov functions hi are constant, 
independent of time. In this case, Eq. (10) gives the simple result 

4, (20) 
P ~ - 2 o + 2 j  

To discuss the second simplification, we introduce the functions po(t) and 
pl(t) as the solutions to the nonstochastic equations 

dpi(t) 
- -  + Fi(p,, t) = 0, i = 0, 1 (21) 

dt 

with initial conditions 

pi(O) = fi,, i = O, 1 (22) 

The physical significance of pi(t) is that it represents the dynamics of the 
problem for the statistical realization corresponding to the system being in 
state i for all times 0 ~< t < oo. Our second simplification in this initial 
development is the assumption that the solution p(t) for a given (but 
arbitrary) realization of the statistics is bounded according to 

po(t) <~ p(t) <<. p,(t)  (23) 

That is, the statistical realization corresponding to the system being in state 
0 for all times forms a lower bound on the solution for any other realiza- 
tion, and the statistical realization corresponding to the system being in 
state 1 for all times forms an upper bound on the solution for any other 
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realization. This situation is often encountered in practice and is the case 
for the previously reported analytical solutions corresponding to 
Eq. (13) (1'4) and Eq. (14). (8'9/ If Eq. (23) is true, it must be the case that 

Pi(P, t) = O, p < po(t), p > pl(t) (24) 

Thus, the joint probability functions have compact support over an interval 
which is time dependent. We remark that although Eq. (23) is often the 
case in practice, it is in general a very restrictive assumption. At the end of 
this section, we generalize our considerations so that Eq. (23) is not 
required. 

To proceed with the development of the numerical scheme for solving 
Eqs. (4)-(6), we first note that if the system is in state i at t = 0, there is 
a probability given by exp( - t/2i) of the system being in state i for all times 
in the interval (0, t). Further, the probability of the system being in state 
i at t = 0 is just pi as given by Eq. (20). Finally, if the system is in state i 
for (0, t), the solution for Pi(p, t) will contain a Dirac delta function with 
argument p - p ~ ( t ) .  These observations suggest a change of variable from 
Pf(p, t) to Qi(P, t) according to the equation 

P ~(p, t) = p ~ exp( - t/)c,) 6[p - p~(t)] 

+ Qi(p, t) H [ p l ( t )  - p] H [ p  - po(t)] (25) 

where H(z)  is the Heaviside (unit step) function. The Heaviside functions 
were introduced in Eq. (25) because of the compact support indicated in 
Eq. (24). Use of Eq. (25) in Eqs. (4) and (5) gives 

~Qo 0 Q~ Q0 
(FoQo) . . . .  (26) 

~?t ~?p 21 20 

~3Q1 c3 Qo Q1 
(gl Q1) . . . .  (27) 

c~t ~p 20 21 

These two coupled equations for Q~(p, t) hold in the time-dependent 
interval p o ( t ) < p < p l ( t ) .  Using Eq.(25) in Eq.(6), we deduce the 
homogeneous initial conditions 

Q~(p, 0) = 0 (28) 

The change of dependent variables given by Eq. (25) also yields jump 
conditions, which are the driving terms for the solution, at p = po(t) and 
p = pl(t). These are given by 

Pl exp( - t/21) 
Qo(pl,  t )=  (29) 

21[Fo(pl, t ) - -FI (PL,  t)] 

822/60/3-4-11 
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Po exp( - t/2o) 
Ql(po, t ) -  (30) 

2o[Fo(Po, t ) - r~ (po ,  t)] 

Equations (29) and (30) arise from an examination of the change of 
variables from Pi(P, t) to Qi(p, t) at the interval edges po(t) and p~(t). 
However, they can also be obtained from the normalization condition on 
the Pi(P, t) given by Eq. (7). In the special case of stationary statistics, 
Eqs. (7) and (25) combine to give the normalization conditions on the 
Qi(p, t) as 

ffo~(C')) dp Qi(p, t )= p i [1-exp( - t / )~ i )  ] (31) 

If we integrate Eqs. (26) and (27) over p in the interval po(t)< p <p~(t) 
and subsequently make use of Eq. (31), we again arrive at the jump condi- 
tions given by Eqs. (29) and (30). Thus, given the differential equations 
which the Q~(p, t) satisfy, namely Eqs. (27) and (28), the set of two jump 
conditions given by Eqs. (29) and (30) and the set of two normalization 
conditions given by Eq. (31) are not independent. Either of these two sets 
can be disregarded without losing any information. 

To solve these differential equations for the Q~(p, t) numerically, we 
recast them into a weak form by taking moments in the p variable. We first 

wm (p, t), treat Eq. (26) for Qo(p, t) and consider an infinite set of functions (o) 
m ~> 1, which are linearly independent and form a complete set in p for each 
time t. We multiply Eq. (26) by (o) w m (p, t) and integrate over po(t)< p < 
p~(t). This infinite set of moment equations is equivalent to Eq. (26) in 
information since the w m(~ t) form a complete set. To be precise, there are 
very mild smoothness conditions on the functions F~ in Eqs. (26) and (27) 
for this equivalence to be extant, but these conditions are almost always 
satisfied in physical problems. However, the equivalence (or not) between 
Eq. (26) and the infinite set of moment equations is not crucial to our 
development. In obtaining numerical results, we by necessity deal only with 
a finite number of moment equations and, as will become clear shortly, our 
method can be considered as a Galerkin (weighted residual) numerical 
scheme. A bit of algebraic manipulation on these moment equations gives 
the result 

d (`0, alp1 dpo 
Qo(P ) - m ~r l ) Qo(P l ) ---~ dt dt J̀ 0o dp w ~ ( p )  w(~ + w~)(Po) Qo(po) 

f '01 d~ W(m~ fal(P) 00(/9) 1 
J~o L ~ ~ J 

;, 0w,~ (p) § (p) [-Fo(p) Qo(p)] m ~> 1 (32) + dp Qo(p) c3----~ ~p ' 
o 
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In writing Eq. (32), we have not indicated the time dependence of all 
quantities, to simplify the notation somewhat. Using Eq. (21) to eliminate 
dp]dt in Eq. (32) gives the slightly simpler form 

d ~pl Wm (P) Qo(p)+ [FI(Pl)-Fo(Pl)] W(mO)(pl) Qo(Pl) ~t J ~o dp (o~ 

~ [  (o) t(p! ] p 8 (o) + dp Fo(p) 8wm (p) w 
o 8p ~- Qo(P) 

-~- fP ldpO Win(O, (p) LFQI(P)Z Qo(p)],20 3 m~> 1 (33) 

Finally, using the jump condition given by Eq. (29) in Eq. (33), we find 

-s o dp w~)(p) Qo(p) + o 

= dp W(Om)(p) L 2, 

(o, 
dp Fo(p) Owm (p) 8p -~ j Qo(p) 

Qo(p)] P, (o) 
~o J +--~l wm (pl)exp(-t/21), m>~ l 

(34) 

We treat Eq. (27) for QI(p, t) in a similar manner, using a complete set of 
weight functions (a) w m (p, t), m ~> 1. We find, again using Eq. (21) and the 
jump condition given by Eq. (30), 

ewe(p!] 
dt o dp w~)(p) Q,(p)+ o dp f ,(p) 8p 8t j Ox(p) 

Feo(p) e,(p!]+po., = wm (Po) exp ( -  t/2o), m/> 1 
o dpw~(p)  l ~o ~, J ~o 

(35) 

In summary, the moment equations (34) and (35) are a weak form of the 
differential equations (26) and (27), and incorporate the jump conditions 
given by Eqs. (29) and (30). 

To proceed, we expand the functions Qi(p, t) in specified functions 
~b(~~ t) according to 

Qo(P, t) = ~ c(,~ O(~~ t) (36) 
n=l 

QI(P, t)= ~ c(~l)(t) ~(1)(p, t) (37) 
n=l 
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where the (o ~b~ (p, t), n ~> 1, represent a complete set of linearly independent 
functions in p for any time t for each index i =  0, 1, and the cr are 
expansion coefficients to be determined. Without loss of generality, we 
assume that the expansion functions (~) ~b~ (p, t) have been made orthogonal 
to the weight functions w~)(p, t), and further that these functions are 
normalized such that 

re(t) dp (i) 
Wm(P, t)(~i~(P, t)=~mn, i----0, 1 (38) 

~po(t) 

where 5ran is the Kronecker delta symbol. Inserting Eqs. (36) and (37) into 
Eqs. (34) and (35) and making use of Eq. (38), we find the coupled 
ordinary differential equations for the expansion coefficients given by 

ae  (t) 1 o +Tooe ,(t)+ o o (t) dt ~ = 1 Am~(t) 

_ _  ~, Bm.(t)(l) c(~l)(t) + S(Om)(t), m /> 1 (39) 
n = l  

dt Zl ~ = 1 

(o) (1) = Bm.(t ) c.(~ + S m (t), m t> 1 (40) 
n = l  

Here the matrix elements (o (o Bm.(t ) are Am.(t  ) and given by 

Amn(t) = o dp Fi(p) 8p ~-~ j ~b(f(p) (41) 

1 f f l  Wm (p)(/O(p),  jv~i  (42) B(~)"(/)=~ o dp (j) 

and the source components (i) Sm (t) are defined by 

S~)(t) = (p /2 j )  w(~)(pj) e x p ( -  t/2j), j ~ i (43) 

Once again, to simplify the notation we have not indicated the time 
variable of the functions on the right-hand sides of Eqs. (41)-(43). For Eqs. 
(36) and (37) to satisfy the zero initial conditions given by Eq. (28), we 
must have 

(o)  _ (11 0 c m ( O ) - c  m ( ) = 0  (44) 

which constitute the initial conditions on Eqs. (39) and (40). 
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The infinite set of moment-expansion equations developed here are 
exact and generally, in accord with the discussion above Eq. (32), their 
solution is equivalent to the solution of the differential equations for the 
Q~(p, t). To form a numerical approximation scheme, we replace the upper 
summation limits in Eqs. (39) and (40) by a finite integer N and use these 
moment equations only for the indices 1 ~< m ~< N. This gives 2N ordinary 
differential equations for the expansion coefficients C(mO~(t) and (1) C m ( t ) ,  
1 ~< m ~<N. These equations can be solved numerically by any one of a 
number of standard solvers. The accuracy of the Nth-order approximation 
obviously depends upon N, and one would expect greater accuracy as N 
increases. The accuracy for a given value of N will also depend upon the 
choice of the expansion functions ~b(~i~(p, t) as well as the choice of the 
weight functions (0 w,, (p, t). In particular, if one chooses the expansion 
functions ~b(A)(p, t) to reflect any a priori knowledge one has concerning the 
p dependence of Q~(p, t), one would expect good results for low N and fast 
convergence as N increases. In the numerical applications we consider in 
the next section, we have not attempted to optimize the expansion and 
weight functions in any way; we have used simple polynomials in p for 
both the expansion and weight functions, and we observe reasonably fast 
convergence as a function of N. 

This numerical method actually produces a very simple and clean 
analytical result in lowest order. Specifically, we set N =  1, choose unit 
weight functions, i.e., 

(45) 

and choose expansion functions which are independent of p. Enforcing 
Eq. (38), this implies 

1 
~O)(p, t )=  q~]~(p, t ) -  (46) 

pl(t)-po(t) 

We then find that Eqs. (39) (43) reduce to the two equations 

dc~~ ~- c~~ c] 1)(t) + Pl e x p ( -  t/fl 1) (47) 

dt flo )~1 ~l 

dc~)(t) +c~l~(t) c~~ poexp ( - t / 2o )  
- - - t  (48) 

dt )~1 )vo ).o 

The solution to these two equations subject to the zero initial conditions 
given by Eq. (44) is easily verified to be 

c]i)(t) = pi [ 1 - exp( - t/2i) ] (49) 
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Thus, in this lowest order approximation, we have, using Eqs. (46) and 
(49) in Eqs. (36) and (37), 

p ,  [ 1 - e x p (  - t/l~i) ] 
Qi(p, t ) -  (50) 

pl( t ) -po(t)  

Use of Eq. (50) in Eq. (25) then gives the P~(p, t), and. subsequent use of 
these P~(p,t) in Eq.(12) with G(p)=p gives an explicit analytical 
approximation for the ensemble-averaged solution (p(t)).  This is given by 

(p(t) ) = PoPo(t) exp( - t/s + Pl Pl(t) exp( - t/2~ ) 

+ �89  (51) 

where po(t) and pl(t) are the nonstochastic solutions defined by Eqs. (21) 
and (22). We note from Eq. (51) that all of the influence of the functions 
Fi(p, t) is indirect, influencing the solution for (p( t))  only through the 
pi(t). One can easily show that Eq. (51) gives the true behavior for (p( t))  
for small time. More generally, although Eq. (51) is the result of the lowest 
order (N= 1) approximation using very simple expansion and weight 
functions, it may be useful in assessing in a qualitative way the overall 
dynamical behavior of the system. We examine, through numerical 
examples, the behavior of our approximation scheme for higher values of 
N in the next section, and there we will also see numerically the accuracy 
of the N =  1 result expressed analytically by Eq. (51). 

Before leaving this section, however, we recall that the analysis just 
given involved two simplifying assumptions, namely: (1) stationary 
statistics, and (2) simple bounds on p(t) as expressed by Eq. (23). We now 
briefly indicate the development of the numerical method in the general 
case, without making these two simplifying assumptions. We begin by 
discussing the bounds on p(t); i.e., we seek the analog of Eq. (23) in the 
general case. We note that one, or perhaps more than one, of the realizations 
of the statistics will give, at a given time t, a maximum result for p(t). At 
a second time, one or more different realizations (or perhaps the same 
realizations as for the first time) will also give a maximum result for p(t). 
We denote this upper bound on p(t) by U(t). Similarly, at any given time 
one or more statistical realizations wilt give the smallest possible value for 
p(t). We denote this lower bound on p(t) by L(t). Thus, for an arbitrary 
realization of the statistics we have 

L(t) <~ p(t) <~ U(t) (52) 
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The bounding functions satisfy the equations 

dU!t) +Fu(U, t; T ) = 0 ,  O<<.t<~T (53) 
at 

dL(t) 
d~- + F,(L, t; T) = O, 0 <~ t <<. T (54) 

The initial condition on Eqs. (53) and (54) is, in each case, either Po or Pl 
[see Eq. (3)], depending upon the state of the system at t = 0. The function 
Fu(U, t; T) is, at any time t, either Fo(U, t) or FI(U, t), chosen such that 
the function U(t) is the maximum value, over all realizations, of p(t) at 
t = To That is, it is this function F u which reflects the particular realization 
of the statistics which maximizes p(t) at t =  T. Similarly, the function 
Ft(L, t; T) is, at any time t, either Fo(L, t) or FI(L, t), and this function 
reflects the particular realization of the statistics which minimizes p(t) at 
t = T. In view of Eq. (52), we have 

Pi(p, t) = O, p < L(t) and p > U(t) (55) 

We assume that the functions U(t), L(t), F,(U, t; T), and F~(L, t; T) can be 
found and hence we take them as known. In our final result, the functions 
Fu and F~ do not appear. Thus, it is really only necessary that the bounding 
functions L(t) and U(t) be known explicitly. We remark that in general the 
functions L(t) and U(t) are difficult to determine. However, in many 
problems they can be found from simple physical considerations. These 
functions determine the region of support (in p) of the functions P~(p, t), 
and our numerical method makes use of this compact support. 

Considering now the solution of Eqs. (4)-(6) in the general case, 
which allows the Markov functions 2~ to depend upon time, we note that 
if the system is in state i at t = 0, the probability of the system being in state 
i for the interval (0, t) is given by 

Prob = exp( - ri) (56) 

where 

~ =  dr/,~i(r) (57) 

Further, the probability of the system being in state i at t = 0 is just pi(0), 
and if the system is in state i for (0, t), the joint probability Pi(P, t) will 
contain a Dirac delta function with argument p - p i ( t ) ,  where pi(t) is 
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defined by Eqs. (21) and (22). These observations together with Eq. (55) 
lead us to introduce the change of variables 

Pi(P, t) = pi(0) exp(-z~) 6[p - pi(t)] 

+ Q,(p, t) H[U(t ) -p]  H[p - L(t)] (58) 

We find that within the interval L(t)<p < U(t) the Qr t) satisfy the 
coupled equations 

OQo a Q~ Q~ + ~ e x p ( - ~ l ) 6 ( p - p ~ )  (59) 
at ap (F~176 22 20 . 

aQ~ a (F~Q~) Qo Q~+~o)eXp(_%)6(p_po)  (60) 
at ap 2o ~1 

with initial conditions 
Qi(p, 0 ) = 0  (61) 

We note the appearance of delta-function terms in Eqs. (59) and (60) 
which were not present in the previous analysis [see Eqs. (26) and (27)]. 
We comment more on this point later. The change of variables given by 
Eq. (58) also leads to boundary terms at p = L(t) and p = U(t) given by 

[Fo(L) - Ft(L)] Qo(L) = 0 (62) 

[F0(U ) - F,(U)]  Qo(U) = 0 (63) 

[FI(L)-Ft(L)] QI(L) = 0  (64) 

[F~(U)-F,(U)] QI(U) = 0  (65) 

In writing Eqs. (62)-(65), we have only indicated the p variable in all func- 
tions for simplicity of notation. We note that at any time t, each of the 
functions F~ and F, is either F0 or F1. Thus, two of the four equations 
(62)-(65) are identities. The remaining two equations constitute nontrivial 
conditions on the Q,(p, t). 

To develop the numerical scheme, we take moments of Eqs. (59) and 
(60) with respect to weight functions (i) w m (p, t), m ~> 1, just as we did earlier. 
Omitting the algebraic details, we find, making use of Eqs. (53), (54), and 
(62)-(65), the weak form of the equations for Q,(p, t) given by 

d u u 

u ap [e , (p )  eo(p)] + f 
JL L # 2o J 

(o) ow (p! l 
at J Qo(P) 

m ~> 1 (66) 
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i (17 (1) d fU dp (1) fLJ ~Wm (P) ~Wm (t0)] 
--dt c w~ (p) QI(P) + dp Fl(p) ~,p -~ j O,(p) 

dp (1) F Qo(p) Q~(p! o(1) (67) 

where we have defined 

s~(t)  = p:(O) 2 ~  w~)(PJ) exp( - zj), j ~ i (68) 

To proceed, we expand the functions Qi(p, t) just as before according to 
Eqs. (36) and (37), with the limits of integration on the normalization 
conditions given by Eq. (38) now taken as L(t) and U(t). We arrive at the 
coupled ordinary differential equations for the expansion coefficients c~)(t) 
given by 

dc ~ t m ( )  1 
+ 2 - ~  C(Om)(t) + L Am.U)(~ c(O)(t) 

dt n=l 

(1) c}l)(t) S~)(i) ' m/> 1 (69) = Bmn(t ) -I- 
n=l 

dc(t)(t , . , )  1 
dt + 2 - ~  c2>(t)+ ~ A.,.((l> t) c~t~(t) 

n=l 

(o) c~~ + S~)(t), >~ 1 (70) = B,..(t) m 
n=l 

The matrix elements A(.~)~(t) and B(r~(t)in Eqs. (69) and (70) are given by 

( ' )  -f~ I Ow2(o)~p ~w2(0)]77 Am.(t)-- jL dp ri(p) - j~b(~i)(p) (71) 

(i) _ (j) Bm.(t ) -- dp ~(O(p), j r  w m (p) i (72) 

Equations (69) and (70) are to be solved subject to the initial conditions 

CtmO)(0) = c~ (0 )  = 0 (73) 

The Nth-order approximation follows by replacing the upper summation 
limits in Eqs. (69) and (70) by a finite integer N and using these moment 
equations for the restricted set of indices 1 ~< m ~< N. This completes the 
development of our numerical scheme to solve Eqs. (4)-(6) in the most 
general case. 



460 Boffi et aL 

We note the similarity of our equations in the general case to those we 
obtained earlier in a more restricted setting. Specifically, Eqs. (68)-(73) are 
the generalizations of Eqs. (43), (39)-(42), and (44), respectively. If we 
set L(t)=po(t), U(t)=pl(t), and take the Markov functions 2i to be 
independent of time, our general equations (68)-(73) reduce identically to 
Eqs. (39)-(44). However, it might also be noted that the structure of the 
intermediate equations preceding our final result is different in the general 
case than in the simplified case. In particular, Eqs. (59) and (60) contain 
delta-function inhomogeneous terms, whereas Eqs. (26) and (27) do not. 
Further, Eqs. (62)-(65) represent homogeneous boundary conditions, 
whereas Eqs. (29) and (30) are inhomogeneous. The delta functions in Eqs. 
(59) and (60) in the general case take the place, and form the equivalent 
driving terms for the solution, of the inhomogeneous boundary conditions 
given by Eqs. (29) and (30) in the simplified cases. This equivalence 
between the inhomogeneous delta-function terms and the inhomogeneous 
boundary conditions is evident from the close correspondence of our final 
equations in the general and simplified cases. 

It is clear that the delta functions in Eqs. (59) and (60) will lead to a 
discontinuity in the solution for Qo(p, t) at p=pl( t )  and a similar 
discontinuity in the solution for Q~(p, t) at p = po(t). This suggests that a 
more rapidly converging numerical solution method would be one based 
upon separate smooth expansions on either side of the discontinuity, with 
appropriate jump conditions connecting the expansions at the point of 
discontinuity. Such a scheme is easily developed by a straightforward exten- 
sion of the analysis given here, but the details are algebraically cumber- 
some and will not be pursued in this paper. This two-expansion scheme in 
the limit of L(t)= po(t) and U(t)= p~(t) reduces to the single-expansion 
method already discussed, since in this limit the locations of the delta 
functions coincide with the ends of the support interval of the Qi(p, t). 

4. N U M E R I C A L  RESULTS 

In this section we give representative numerical results using the 
expansion method just described. We first apply our method to a problem 
considered earlier ~1,4) which describes the transmission of photons through 
a purely scattering statistical rod. This problem is one for which p(t) 
decreases monotonically with time for any realization of the statistics, and 
corresponds to F~ = aip 2, with the constants ai > 0, in the notation of Eqs. 
(2) and (21). The second problem we consider corresponds to Fi=aip 1/2, 
with ai< 0. For any realization of the statistics, this problem leads to a 
solution for p(t) which increases monotonically with time. Both of these 
problems have an analytical solution for the Pi(p, t) as outlined in the 



Discre te-Sta te  Markov ian  In i t ia l  Value Problems 461 

appendix, and we use these analytical results to assess the convergence of 
our numerical method as a function of N, the order of the approximation. 
The final example we consider is a simple problem arising in extended 
kinetic theory, (5"6) for which no analytical results are available. 

All three of these problems share the common characteristic that po(t)  
and p~(t)  bound p( t )  for any realization of the statistics, i.e., 

L ( t )  = po(t); V( t )  = p , ( t )  (74) 

Further, in all three cases we use very simple expansion and weight func- 
tions, namely polynomials in p orthogonal on the time-dependent interval 
(L, U). Specifically, we choose the weight functions to be 

w(i)(o t) = P m -  l (x ) ,  m ~> 1 (75) m \ t ' ,  

where Pm denotes the mth-order Legendre polynomial, and 

2p  - L ( t )  - U ( t )  
x - ( 7 6 )  

v ( t )  - L ( t )  

The change of variables from p to x given by Eq. (76) transforms the p 
interval (L, U) to - 1  ~<x~< 1, the natural interval for Legendre poly- 
nomials. We choose the expansion functions as similar polynomials 
according to 

~(~')(p, t) = P ,  _ l ( x ) / Nn  _ ,( t) ,  n >~ 1 (77) 

where Nn( t )  is a normalization factor introduced to ensure that Eq. (38) is 
satisfied, and is given by 

v ( t )  - z . ( t )  
Nn( t )  = , n >~ 0 (78) 

2 n + l  

Finally, in all three examples we consider stationary statistics, i.e., the 
Markov functions 2, are taken as independent of time, and we choose the 
initial condition to be nonstochastic (independent of the state i at t = 0). By 
a proper scaling of the dependent variable p, we can thus use, without loss 
of generality, a unit initial condition, i.e., 

p ( 0 ) = ~ o = ~ l  = 1 (79) 

The numerical procedure is as follows. For given functions Fi(p,  t), 
Eqs. (21) and (22) are solved to obtain L ( t )  and U(t)  [see Eq. (74)]. One 
then computes the source terms S(~)(t) from Eq. (68) using the weight 
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functions given by Eq. (75), and computes the matrix elements ~0 A~nn(t) and 
B(~),(t) from Eqs. (71) and (72) using the expansion and weight functions 
given by Eqs. (75) and (77). For general F,(p, t), the evaluation of these 
matrix elements will require numerical integration. The system of equations 
given by Eqs. (69) and (70) for 1 ~< m ~< N is then solved numerically using 
any standard package (we used a Gear package) for numerical integration 
of a set of coupled initial value first-order ordinary differential equations. 
From the computed values of c~~ one reconstructs the Qi(p, t) according 
to Eq. (36), replacing the upper summation limit by N, and then finds the 
P~(p, t) from Eq. (58). Any desired ensemble average then follows from 
Eq. (12) via numerical integration. In our three examples, we took (p(t)5,  
the ensemble-averaged solution, as the quantity of interest and thus chose 
G(p)=p in Eq. (12). It might be noted that in computing (p ( t ) )  using 
polynomial expansion functions according to Eq. (77), (p ( t ) )  is entirely 
determined by the first two expansion coefficients c},~ for n = 1 and 2. 
Specifically, we have 

(p(t)  > = PoPo(t) exp( -  %) + plpl( t )  exp(-~l )  

+ �89 ka(t)+ [p l ( t ) -po( t ) ]  k2(t)} (80) 

where 

kn(t) = c~~ + c(~l)(t), n = 1, 2 (81) 

The c~~ for n >2  do not enter into the expression for (p( t ) ) ,  since p is 
orthogonal to Pn(x) on the interval (L, U) for n >~ 2. Of course, the c~~ 
for n = 1, 2 are coupled to the higher n values according to Eqs. (69) and 
(7O). 

Table I gives numerical results for the problem originally considered 
by Vanderhaegen and Deutsch,(l~ namely 

El(p) = a i p  2 (82) 

with ao and a I both positive constants. This leads to a monotonically 
decreasing solution for p(t) as time increases. This table gives <p(t)) for 
various times t corresponding to the Nth-order, 1 ~< N~< 10, approximation. 
The exact results were computed from a numerical integration according to 
Eq. (12) with G(p)= p using the analytical results for the P~(p, t) given in 
the appendix. We see that the numerical scheme converges very rapidly to 
the exact result for small times, while higher N is needed to obtain accurate 
results for longer times. In particular, we see that the N =  1 result, 
expressed analytically by Eq.(51), is quite accurate for t < l ,  but the 
accuracy deteriorates substantially for longer times. We also observe that 
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Tablel .  (p ( t ) )  forFi=a~p 2, wi thao=9 .1 ,  a 1=0 .1 , ;%=0.1 ,  ;% =1.0  

<p(t)> 

N t=O.1 t :O .5  t : l  t = 5  t = l O  t= 50  t= lO0 

1 0.94091 0.77894 0.63951 0.34606 0.25544 0.84430 0.46003 
2 0.94052 0.78627 0.63972 0.20971 0.11450 0.03289 0.01775 
3 0.94052 0.78705 0.64304 0.21343 0.10243 0.02073 0.01095 
4 0.94052 0.78710 0.64341 0.21877 0.10828 0.01834 0.00899 
5 0.94052 0.78710 0.64344 0.21988 0.11118 0.01969 0.00921 
6 0.94052 0.78710 0.64344 0.21994 0.11172 0.02132 0.01016 
7 0.94052 0.78710 0.64344 0.21991 0.11167 0.02210 0.01090 
8 0.94052 0.78710 0.64344 0.21990 0.11161 0.02221 0.01118 
9 0.94052 0.78710 0.64344 0.21989 0.11159 0.02209 0.01115 

10 0,94052 0.78710 0.64344 0.21989 0.11158 0.02198 0.01104 

Exact 0,94052 0.78710 0.64344 0.21989 0.11158 0.02193 0.01093 

for large times the numerical results as a function of N oscillate noticeably 
around the exact solution as convergence is approached for large N. This 
is undoubtedly due to the fact that the exact solution for Qi(p, t) is a 
relatively smooth function of x for small times, but develops an 
increasingly sharp peak as time increases. This behavior for Qo(p, t) is 
shown graphically in Fig. 1, which was constructed from the exact analysis 
given in the appendix. The curves in Fig. 1 have been normalized at each 
time to a unit area under the curve. This large-time peak is obviously not 
well represented by a Legendre expansion of low order, thus accounting for 
the slower rate of convergence as time increases. A more sophisticated 
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Fig. 1. Qo(p, t), normalized to unit area, for Table I conditions. 
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choice of the expans ion  functions,  ta i lored to have the capabi l i ty  of 
represent ing this peak,  should  improve  the long- t ime convergence.  

The  second case we consider  is 

Fi(p) =aip  1/2 (83) 

where ao and a l  are bo th  negat ive constants .  In  this case the solut ion for 
p( t )  for any rea l iza t ion  of the statist ics will grow wi thout  b o u n d  as t ime 
increases. This case is also amenable  to the analyt ica l  t r ea tment  in the 
appendix ,  and  Table  II  compares  results from our  numer ica l  scheme with 
the exact  analyt ica l  results. We  again  observe rap id  convergence for small  
times, fol lowed by slower convergence for in te rmedia te  times, and  
osci l la tory  convergence for long times. F igure  2 shows QI(p, t), again  
normal ized  to unit  area,  for var ious  t imes as c o m p u t e d  from the analyt ica l  
results in the appendix.  We again  see a very p ronounc e d  sharp  m a x i m u m  
for long times. Just  as in the previous  case, this behav ior  for the Qi(p, t) 
explains  the observed slower convergence rate  for long times. In  this case, 
however,  the m a x i m u m  seems to be at  x = - 1  for all t imes, whereas  in the 
previous  case the max imum,  while near  x = - 1 ,  was in the in ter ior  of the 
interval  - 1 <~ x ~< 1. 

The  final case we consider  is the s tochast ic  p rob lem cor respond ing  to 

Fi =aip + p2 (84) 

with a o and a l  bo th  posit ive constants .  In  ex tended kinetic theory,  (5'6~ the 
dependent  var iable  p is the par t ic le  densi ty  in an infinite, source-free, 

Tablell. (p(t)) forFi=aip 1/2, w i t h a o = - O . l , a  1=-9 .1 ,  ;%=1.0, k 1=0.1 

(p(t)) 

N t =0.01 t=0.1 t=0.5 t = l  t=5  t=10 t=20 

1 1.0094 1.1267 3.2237 10.986 28.109 108.22 423.40 
2 1.0094 1.1059 1.6446 2.5019 19.462 67.571 254.42 
3 1.0094 1.1059 1.6373 2.4258 15.275 49.516 180.10 
4 1.0094 1.1059 1.6365 2.4102 13.647 41.845 147.11 
5 1.0094 1.1059 1.6364 2.4066 12.909 37.961 129.38 
6 1.0094 1.1059 1.6364 2.4058 12.560 35.863 119.07 
7 1.0094 1.1059 1.6364 2.4056 12.398 34.720 t12.91 
8 1.0094 1.1059 1.6364 2.4056 12.329 34.120 109.27 
9 1.0094 1.1059 1.6364 2.4056 12.305 33.836 107.23 

10 1.0094 1.1059 1.6364 2.4056 12.302 33.374 106.07 

Exact 1.0094 1.1059 1.6364 2.4056 12.354 34.273 109.73 
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QI(p, t), normalized to unit area, for Table II conditions. 

homogeneous medium whose density varies stochastically in time between 
two states 0 and 1. The constant ai, which is positive, is then the 
absorption coefficient for removal of particles by the background material 
when in state i, and the quadratic term in Eq. (84) accounts for the 
removal of particles due to particle-particle collisions. The nonstochastic 
constant (the particle particle cross section) multiplying the pZ term has 
been set to unity by a proper choice of the time scale. For this problem, 
no analytical results are available, and Table III shows the convergence of 
the numerical scheme as N, the order of the approximation, is increased. 
Once again, we see very rapid convergence for short times and somewhat 
slower convergence for long times. 

In summary, the numerical scheme suggested in this paper appears to 
work quite well for all cases we have tested, including several not reported 
here. Presumably, better convergence behavior could be achieved for long 

Tablelll. <p(t)> fo rF ;=a ip+p  2 , w i t h a 0 = 9 . 1 , a  1=0.1, ;%=0.1, ;% =1.0 

<p(t)> 

N t=0 .01  t = 0 . l  t = 0 . 5  l = l  t = 2  t = 5  t = 1 0  

t 0.98139 0.84534 0.49792 0.30938 0.16345 0.06183 0.02513 
2 0.98140 0.84767 0.50775 0.30241 0.13045 0.01919 0.00186 
3 0.98140 0.84767 0.50793 0.30263 0.13000 0.01745 0.00098 
4 0.98140 0.84767 0.50793 0.30265 0.12999 0.01736 0.00093 
5 0.98140 0.84767 0.50793 0.30265 0.12999 0.01736 0.00092 

10 0.98140 0.84767 0.50793 0.30265 0.12999 0.01736 0.00092 
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times by using expansion functions other than polynomials which can 
better represent the peaked behavior of the Qf(p, t) for tong times. We 
hope to report results in this direction in the future. 

5. C O N C L U D I N G  R E M A R K S  

A numerical method, based upon a moments-expansion technique, has 
been developed in Section 3 for solving the Liouville master equation 
description of discrete-state Markovian initial value problems. This descrip- 
tion is given by Eqs. (4)-(6), and involves general functions Fi( p, t) which 
determine the dynamics of the system. Numerical results for three 
cases--(1) Fi(p , t )=aip  2, ai>0;  (2) Fi(p, t)=a~p 1/2, a~<0; and (3) 
F~(p, t) --- aip + p2, ai?> 0~have been reported and discussed in Section 4. 
For cases 1 and 2, the numerical results were shown to converge to the 
exact answers which were constructed using standard Laplace transform 
techniques as discussed in the appendix for the class of dynamic functions 
given by F~(p, t)=aiF(p). Further validation of the numerical method 
comes from comparison of the results for case 1 with results available in the 
literature. ( ~' 4) 

Future investigations in this general area will concentrate on 
two items, namely (1) the improvement of the convergence rate of the 
numerical method for large times by utilizing expansion functions more 
appropriate than simple polynomials, and (2) the extension of the analytic 
treatment to a wider class of functions than given by Eq. (A.14), to include, 
in particular, case 3 and other problems drawn from extended kinetic 
theory. (5,6) 

APPENDIX .  A N A L Y T I C A L  SOLUTION OF THE 
LIOUVILLE M A S T E R  E Q U A T I O N  

In this appendix we show that the coupled equations satisfied by 
Po(P, t) and PI(P, t) can be solved analytically for a certain class of 
functions Fi(p, t). The equations to be considered are 

~Po ~ P1 Po 
(FoPo) . . . .  (A.1) 

0t 0p 22 20 

~P~ ~ Po P1 
(F1P~) . . . .  (A.2) 

dt Op 2o 2~ 

with initial conditions 

P , ( p , O ) = p ~ ( O ) f ( p - ~ ) ,  i=0,  1 (A.3) 
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The state probabilities p~(t) are related to the Pi(P, t) according to 

r j ~  dp Pi(p, t) = pi(t) (A.4) 
o o  

For this integral to exist, P~(p, t) must vanish for p = _o% and hence the 
characteristics (if any) emanating from p = + ~  have a zero boundary 
condition. In our analysis, we restrict ourselves to the case of stationary 
statistics; that is, 2o and 21 are constant, independent of time. In this case, 
the probabilities p, are also independent of time and given by [-see 
Eq. (20)3 

)'i (A.5) 
P i = 2 o + 2 1  

Thus, in the case we consider, the integral on the left-hand side of Eq. (A.4) 
is a constant, independent of time, and this constant is given by Eq. (A.5). 

If we also restrict ourselves to functions F~ which are independent of 
time, we can Laplace transform Eqs. (A.1) and (A.2) with respect to time 
to obtain 

(, - ', + (FoPo) = ~ + poa(p - ~) (A.6) 

Po 

Here s is the transform variable and Ps(P, s) is the Laplace transform of 
Pf(p, t). In writing Eqs. (A.6) and (A.7), we have assumed a nonstochastic 
initial condition, i.e., 

f o = p ,  = f  (A.8) 

This was done for algebraic simplicity in the considerations to follow, but 
the more general case 13 o r  can also be treated. The inhomogeneous 
equations (A.6) and (A.7) can be replaced with the homogeneous equations 

F -  Pl 

subject to the discontinuity requirement 

Fi(C3)[Pi(t3 , s ) - P , ( ~ + , s ) ] = p i ,  i=0 ,  1 (A.11) 

822/60/3-4-12 
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Further, Laplace transformation of Eq. (A.4), with Pi independent of time, 
gives 

f~ dp Pi(P, s ) = ~  (1.12) 
--oo S 

In writing Eq. (A.11), we have assumed that the Fi(p) are continuous at 
p = ~, but generalization to discontinuous Fi(p) is straightforward. 

We use Eq. (A.9) to eliminate PI(P, s) in Eq. (A.10). The result is 

8 I F 1 8  ( s +  1 8 

--(SAI--~O)-~(FlPo)'3ffS(S-~-~o'Jr~I).Po=O , jO~p ( A . 1 3 )  

Equation (1.13) is a second-order differential equation in p with, for 
general F~(p), variable coefficients. As such, a general solution is not 
available. If, however, we restrict our further considerations to the subclass 

Fi(p)=aiF(p) (A.14) 

then Eq. (A.13) is amenable to an analytical solution. That is, we treat the 
case when Fo and F1 have a common p dependence and differ only by a 
multiplicative constant. In this case the change of variables 

f f  dp__~'. Ro(r,s)=F(p)Po(p,s) (1.15) r(p)  = f ( p ' ) '  

reduces Eq. (A.13) to the constant-coefficient equation given by 

82Ro [ ao al] SRo 
a~ -- (a~ 8r 

(,+L+L) 
+ s  2o 2 1 J h ~  r~a0 (A.16) 

The general solution of Eq. (A.16) is readily found to be 

Ro(r, s) = Ao(s) exp[e(s)r] + Bo(s ) exp[/~(s)r] (A.17) 

where Ao and B o are integration constants, and c~ and/7 are given by 

a0 2aoal T(s) = (ao + al)s + ~1 + a--2 
20 

[ (aoal"] al )2]  1/2 
+ (a~176 2 o j s + ( a ~  - (A.18) 
- \21 2ol J 
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For concreteness, we take 7--c~ as corresponding to the plus sign in 
Eq. (A.18), and 7 = fi is associated with the minus sign. From Eq. (A.18) it 
is easily deduced that ~, fl> 0 for ao, al >0  and c~, fi <0  for ao, a l<0 .  
When ao and al have different signs, the signs of c~ and fl depend upon 
the parameters 2o and 21 as well as the value of the Laplace transform 
variable s. 

Returning to the variable Po and p, we write Eq. (A.17) as 

F(p)Po(p, s) 

=~A~(s)exp[c~(s)r(p)]+B~(s)exp[fl(s)r(p)], P>fi (A.19) 
~Ao(s) exp[c~(s) r(p)] + Bo(s ) exp[fl(s) r(p)], p < 

where we have divided the p space into two regions, one to the left ( - )  
and one to the right ( + ) of the discontinuity at p = iS. In complete analogy, 
we find that P1 is given by 

F(p) PI(P, s) 

={A ;(s) exp[c~(s)r(p)]+B~(s)exp[fl(s)r(p)]' P>fi (A.20) 
[-(s) exp [c~(s) r(p)] + B ;  (s) exp[fl(s) r(p)], p < r 

Equations (A.19) and (A.20) contain eight constants, A~, Bf ,  A~, 
B~, which must be determined. Consistency between Eqs. (A.9) and (A.10) 
requires that 

A~(s)= )q [ao~(S)+ S + ~-s A~(s) (A.21) 

I 1] e?(~)=x, ao/~(~)+~+To ~ 8~(~) (a.za) 

Applying the jump conditions given by Eq. (A.11) yields 

a,[Af (s )+B?(s) -A?(s ) -B[(s )]  =p .  i=0,  1 (A.23) 

Finally, demanding that Eqs. (A.19) and (A.20) satisfy the integral condi- 
tions given by Eq. (A.5) yields 

A+(s) B+(s) 
{exp[~(s)r+] - 1} - - ~ - +  {exp[fl(s)r+] - 1} fl(s) 

B[ (s) p~ 1 
+{1--exp[~(s)r  ]} +{1--exp[/~(s)r_]} fl(s) s' i=  0, 

(A.24) 
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Here r and r+ are defined as 

f~r~,, dp fjmo~ dp 
r = " r+ = (A.25) 

- F ( p ) '  F ( p )  

where flmin and flmax form the edges of the largest interval (flmin, /)max) for 
which the change of variables from p to r given by Eq. (A.15) is invertible. 
This implies that F(p) cannot change sign in this interval, and for concrete- 
ness we take F(p)>>.O. For the first two examples in Section 4 of the text, 
flmin = 0 and p .... = ~ .  The third example in that section is not in the class 
defined by Eq. (A.14). Equations (A.21)-(A.25) constitute eight conditions 
for the eight constants Ai + and B~, i=  0, 1. Making use of the identities 

fl 1 ! 1 
( ~ _ 1 )  ( a o f l _ , ) =  (S_~oo) (ao~_S) =)~o (~_~1 _ 1  ) (A.26) 

ct 1 1 1 
( s - ~ )  ( a l f l - s ) = ( ~ - l ) ( a l e - s ) : ~  (~o - 1 )  

one can easily verify that the solution for these constants is 

(A.27) 

where 

A o (s) = - [_exp(ar + ) - exp(c t r  )J go(s) 

Bo(s ) = ~ exp(fir +) - )1 ho(s) 
[ exp(flr + ) - exp(flr 

A~-(s) = - ~  e__xxp(er ) ] 
L e x p ( e r + ) -  e x p ( e r  )J go(s) 

B~-(s)-- [ exp(flr ) ] ho(s) 
[_exp(fir + ) - exp(flr _ )J 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

poa(ao~-S)  go(s) - (A.32) 
ao(a -/~)s 

pofl(aoOr - s) ho(S) - (A.33) 
ao(Ct - fi)s 

The constants A (  and B~ are obtained from Eqs. (A.28)-(A.33) by inter- 
changing the state indices 0 and 1. 

At this point the Laplace transforms/3i(p, s) are fully determined, and 
we only need to invert these transforms to obtain the joint probability 
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functions Pi(P, t). In the general case, we have been unable to analytically 
find this inverse. However, in most physical cases it happens that either 
r = - o e  or r+ = oe or both. This is the case for the first two examples in 
Section 4. The constants then simplify as shown in Table IV; we have 
omitted the state index on the entries in this table. In all of these cases, 
analytical inversion is possible. We give explicit results only for the case 
c~, f l>  0, but the other three cases are treated in a completely analogous 
fashion. Considering Po(P, t) for the ~, f l > 0  case with A + = B  + =0,  we 
have 

{ ~  go(s) ho(s) 
Po(P, s) -~exp[~(s )  r(p)] +-~-~exp[fi(s) r(p)], p < ~ 

= (A.34) 
p > ~  

with r, ~, fl, go, and ho given by Eqs. (A.15), (A.18), (A.32), and (A.33). 
Equation (A.34) is easily inverted using any relatively complete Laplace 
inversion table. In particular, we used Eqs. (70), (72), and (74) on pages 
254 and 255 of ref. 10. The result is given by 

[aoa101 Po(P, t) = Po exp[r(P)/(ao2o) ] 6(00) + [I2(u) - Io (u ) ]  
ao(ao-al) F(p) k 2o2~ 

ao 1 L(a oa ) ;} +--~olo(u) H(0o)[1 - H ( 0 1 ) ]  exp - 00 (A.35) 

where H(z) is the Heaviside (unit step) function, 6(z) is the Dirac delta 
function, Ii(z) is the usual modified Bessel function, and 

0o_ a~ 0 l - alt+r(p) 
(A.36) 

ao(ao - al a1(ao - al) 
=~2aoa, 10o01111/2 

/A' ~_ ,~0,~ 1 (A.37) 

Table IV. The Cons tan ts  A ~ and B • When r or  r+ Is Unbounded 

a, fl>0 ~,fl<0 a>0, fl<0 a<0, fl>0 

A - - g  0 - - g  0 

B -  h 0 0 h 

A + 0 g 0 g 

B + 0 - h  - h  0 
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The results for PI(P,  t) can be ob ta ined  from Po(P, t) by interchange of the 
state indices 0 and 1. 

The exact  results repor ted  in Table  I and  Fig. 1 were compu ted  from 
Eq. (A.35) and  the cor respond ing  result  for PI(P,  t). The exact  results 
repor ted  in Table  II  and  Fig. 2 were computed  from formulas  ana logous  to 
these for the case e, / 3 < 0  with A 7 = B e -  = 0 .  
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